Support Valgrind attachments broken by the PIE support.
	* auxv.c: Include gdbcore.h.
	(procfs_xfer_auxv): Make static.  Reduce its comment.  Drop its
	parameters ops, object and annex.  Remove their assertions.
	(ld_so_xfer_auxv, memory_xfer_auxv): New function.
	* auxv.h (procfs_xfer_auxv): Remove comment.  Rename to ...
	(memory_xfer_auxv): ... here.
	* linux-nat.c (linux_xfer_partial): Rename procfs_xfer_auxv to
	memory_xfer_auxv.
	* procfs.c (procfs_xfer_partial): Likewise.
	* solib-svr4.c (svr4_relocate_main_executable): New prototype.
	(svr4_special_symbol_handling): Call svr4_relocate_main_executable.
	(svr4_solib_create_inferior_hook): Conditionalize the
	svr4_relocate_main_executable call.

gdb/testsuite/
	* gdb.base/valgrind-db-attach.exp, gdb.base/valgrind-db-attach.c: New.
This commit is contained in:
Jan Kratochvil
2010-01-14 21:15:00 +00:00
parent bbfba9ed15
commit 9f2982ff0b
9 changed files with 276 additions and 19 deletions

View File

@@ -25,6 +25,7 @@
#include "inferior.h"
#include "valprint.h"
#include "gdb_assert.h"
#include "gdbcore.h"
#include "auxv.h"
#include "elf/common.h"
@@ -33,15 +34,11 @@
#include <fcntl.h>
/* This function is called like a to_xfer_partial hook, but must be
called with TARGET_OBJECT_AUXV. It handles access via
/proc/PID/auxv, which is a common method for native targets. */
/* This function handles access via /proc/PID/auxv, which is a common method
for native targets. */
LONGEST
procfs_xfer_auxv (struct target_ops *ops,
enum target_object object,
const char *annex,
gdb_byte *readbuf,
static LONGEST
procfs_xfer_auxv (gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset,
LONGEST len)
@@ -50,9 +47,6 @@ procfs_xfer_auxv (struct target_ops *ops,
int fd;
LONGEST n;
gdb_assert (object == TARGET_OBJECT_AUXV);
gdb_assert (readbuf || writebuf);
pathname = xstrprintf ("/proc/%d/auxv", PIDGET (inferior_ptid));
fd = open (pathname, writebuf != NULL ? O_WRONLY : O_RDONLY);
xfree (pathname);
@@ -72,6 +66,143 @@ procfs_xfer_auxv (struct target_ops *ops,
return n;
}
/* This function handles access via ld.so's symbol `_dl_auxv'. */
static LONGEST
ld_so_xfer_auxv (gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset,
LONGEST len)
{
struct minimal_symbol *msym;
CORE_ADDR data_address, pointer_address;
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
size_t ptr_size = TYPE_LENGTH (ptr_type);
size_t auxv_pair_size = 2 * ptr_size;
gdb_byte *ptr_buf = alloca (ptr_size);
LONGEST retval;
size_t block;
msym = lookup_minimal_symbol ("_dl_auxv", NULL, NULL);
if (msym == NULL)
return -1;
if (MSYMBOL_SIZE (msym) != ptr_size)
return -1;
/* POINTER_ADDRESS is a location where the `_dl_auxv' variable resides.
DATA_ADDRESS is the inferior value present in `_dl_auxv', therefore the
real inferior AUXV address. */
pointer_address = SYMBOL_VALUE_ADDRESS (msym);
data_address = read_memory_typed_address (pointer_address, ptr_type);
/* Possibly still not initialized such as during an inferior startup. */
if (data_address == 0)
return -1;
data_address += offset;
if (writebuf != NULL)
{
if (target_write_memory (data_address, writebuf, len) == 0)
return len;
else
return -1;
}
/* Stop if trying to read past the existing AUXV block. The final AT_NULL
was already returned before. */
if (offset >= auxv_pair_size)
{
if (target_read_memory (data_address - auxv_pair_size, ptr_buf,
ptr_size) != 0)
return -1;
if (extract_typed_address (ptr_buf, ptr_type) == AT_NULL)
return 0;
}
retval = 0;
block = 0x400;
gdb_assert (block % auxv_pair_size == 0);
while (len > 0)
{
if (block > len)
block = len;
/* Reading sizes smaller than AUXV_PAIR_SIZE is not supported. Tails
unaligned to AUXV_PAIR_SIZE will not be read during a call (they
should be completed during next read with new/extended buffer). */
block &= -auxv_pair_size;
if (block == 0)
return retval;
if (target_read_memory (data_address, readbuf, block) != 0)
{
if (block <= auxv_pair_size)
return retval;
block = auxv_pair_size;
continue;
}
data_address += block;
len -= block;
/* Check terminal AT_NULL. This function is being called indefinitely
being extended its READBUF until it returns EOF (0). */
while (block >= auxv_pair_size)
{
retval += auxv_pair_size;
if (extract_typed_address (readbuf, ptr_type) == AT_NULL)
return retval;
readbuf += auxv_pair_size;
block -= auxv_pair_size;
}
}
return retval;
}
/* This function is called like a to_xfer_partial hook, but must be
called with TARGET_OBJECT_AUXV. It handles access to AUXV. */
LONGEST
memory_xfer_auxv (struct target_ops *ops,
enum target_object object,
const char *annex,
gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset,
LONGEST len)
{
gdb_assert (object == TARGET_OBJECT_AUXV);
gdb_assert (readbuf || writebuf);
/* ld_so_xfer_auxv is the only function safe for virtual executables being
executed by valgrind's memcheck. As using ld_so_xfer_auxv is problematic
during inferior startup GDB does call it only for attached processes. */
if (current_inferior ()->attach_flag != 0)
{
LONGEST retval;
retval = ld_so_xfer_auxv (readbuf, writebuf, offset, len);
if (retval != -1)
return retval;
}
return procfs_xfer_auxv (readbuf, writebuf, offset, len);
}
/* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
Return 0 if *READPTR is already at the end of the buffer.
Return -1 if there is insufficient buffer for a whole entry.